สำหรับบทความนี้จะประกอบไปด้วย 2 ส่วน คือ ทฎษฎีของ Big Data และ Graph โดยจะเริ่มจากส่วนของ Big Data ก่อนนะครับ

Big Data คือ ก้อนข้อมูลก้อนหนึ่ง ที่มีความหลากหลายของประเภทของข้อมูลและมีปริมาณมากมายมหาศาล ซึ่งปริมาณข้อมูลนั้นจะมีการเพิ่มขึ้นอยู่ตลอดเวลา ทำให้การค้นหาข้อมูลรวมไปถึงรูปแบบความสัมพันธ์ของข้อมูลที่มีความซับซ้อนมีความเป็นไปได้ยาก ดังนั้น จึงได้มีการพัฒนาทฤษฎี Graph ขึ้นมา เพื่อใช้สำหรับช่วยเหลือในการค้นหาและวิเคราห์ข้อมูลของ Big Data

สำหรับการวิเคราะห์ข้อมูลของ Graph จะถูกออกแบบมาให้สามารถเข้าถึงข้อมูลที่มีความซับซ้อนและหลากหลายของข้อมูล รวมทั้งยังสามารถทำนายแนวโน้มของข้อมูล จากพฤติกรรมของข้อมูลที่มีอยู่ ทำให้สะดวกและรวดเร็วเหมาะกับการพัฒนาศักยภาพขององค์กร สร้างความได้เปรียบในการแข่งขันของธุรกิจ

สำหรับการนิยามคุณลักษณะของ Big Data นั้น ในปี ค.ศ. 2001 นั้น ได้เริ่มมีการกำหนดคุณลักษณะของ Big Data ที่มีส่วนประกอบ หลักๆ หรือเรียกสั้นๆ ว่า 3V ดังนี้

  • Volume คือ ข้อมูลที่มีปริมาณตั้งแต่ระดับ Terabytes หรือมีขนาด 10¹² ขึ้นไป
  • Variety คือ ข้อมูลที่มีความหลากหลายจากแหล่งที่มาของข้อมูล เช่น จากแหล่ง Social Network, Data base หรือ Data warehouse ต่างๆ ซึ่งเราสามารถจำแนกได้เป็น 3 กลุ่ม ดังนี้
- Structured Data คือ ประเภทข้อมูลที่ถูกจัดเก็บตามรูปแบบหรือโครงสร้างที่ถูกกำหนดเอาไว้ โดยประกอบไปด้วย ชื่อฟิลด์, ชนิดของข้อมูล, และค่าของข้อมูลตามโครงสร้างที่กำหนดเอาไว้
  • Velocity คือ ข้อมูลที่มีการเปลี่ยนแปลงตลอดเวลา และมีอัตราเพิ่มขึ้นอย่างรวดเร็ว ซึ่งรวมไปถึงการสร้างและการประมวลผลของข้อมูล
3V Models (https://www.theviable.co/how-big-data-impact-to-corporate/)

และในภายหลัง (ปี ค.ศ. 2012) ได้มีการกำหนดคุณลักษณะของ Big Data เพิ่มเติมอีก 2V คือ

  • Veracity คือ ความน่าเชื่อถือและคุณภาพของข้อมูล เช่น ข้อมูลที่เป็น Fake news ต่างๆ อาจจะทำให้ข้อมูลที่ถูกนำมาวิเคราะห์อาจเกิดความผิดพลาด
  • Value คือ ข้อมูลที่มีประโยชน์ต่อการนำเอามาใช้ประมาลผล เช่น ข้อมูลสภาพอากาศ, การจราจร หรือข้อมูลตลาดหุ้น เป็นต้น
5V Models (https://www.techentice.com/the-data-veracity-big-data/)

ในปี ค.ศ. 2019 นั้น ได้เพิ่ม V ตัวที่ 6 ขึ้นมา นั่นก็คือ Variability คือการผันแปรของข้อมูล ซึ่งจะหมายถึง ข้อมูลสามารถในการเปลี่ยนแปลงรูปแบบไปตามการใช้งาน หรือสามารถคิดวิเคราะห์ได้จากหลายแง่มุม และรูปแบบในการจัดเก็บข้อมูลก็อาจจะต่างกันออกไปในแต่ละแหล่งของข้อมูล

6V Models ( https://www.perceptra.tech/6-vs-of-big-data/ )

และในอนาคตอันใกล้ๆ นี้ ก็จะมี V ตัวใหม่ๆ เพิ่มขึ้นมาอีก

  • Visualization หรือ การแสดงข้อมูล เพื่อช่วยสำหรับการตัดสินใจและเป็นส่วนที่ผู้ใช้งานสามารถ interact ได้อีกด้วย
  • Viscosity ว่าด้วยเรื่องความเร็วในการเข้าถึงข้อมูลและการประมวลผลข้อมูลที่มีความซับซ้อนสูงมากๆ
V8 Model ( https://www.m-brain.com/technology/ )

สำหรับตัว V-Models อาจจะมีเพิ่มเติมไปจนถึง 42V ซึ่งก็คงต้องดูกันอีกต่อไปว่าจะมีการกำหนดออกมาเมื่อไร สำหรับข้อมูลเพิ่มเติมของ V อื่นๆ สามารถหาอ่านได้จากลิงค์นี้ครับ

https://www.elderresearch.com/blog/42-v-of-big-data

ทฤษฎี Graph นั้น จะเป็นโครงสร้างข้อมูล ที่จะประกอบไปด้วย กลุ่มของ Node / Vertex และมีการเชื่อมต่อแต่ละกลุ่มด้วย Edge (วรานุช แขมมณี, 2016)

Graph Structured

สำหรับประเภทของ Graph นั้น จะถูกแบ่งออกเป็น 2 ลัษณะหลักๆ ดังนี้

  • Undirected Graph คือ กราฟที่ไม่มีการระบุทิศทางการไหลของข้อมูล
  • Directed Graph คือ กราฟทีมีการระบุทิศทางการไหลของข้อมูล
Undirected / Directed Graph ( http://omtlab.com/directed-and-undirected-graph/ )

นอกจากนี้ ยังมีประเภทอื่นๆ อีก 3 ประเภท ดังนี้

  • Cyclic Graph คือ กราฟเชิงเดี่ยวแบบมีจุดเริ่มต้น และจุดสิ้นสุด และมีความสำพันธ์ที่เชื่อมเข้าหาตัวเอง
Cyclic Graph ( https://www.geeksforgeeks.org/detect-cycle-in-a-graph/ )
  • Acyclic Graph คือ กราฟเชิงเดี่ยวแบบมีจุดเริ่มต้น และจุดสิ้นสุด และไม่มีความสำพันธ์ที่เชื่อมเข้าหาตัวเอง
Acyclic Graph ( https://hazelcast.com/glossary/directed-acyclic-graph/ )
  • Complete Graph คือ กราฟที่ทุก Nodes หรือ Vertex จะเชื่อมต่อเข้าหากัน
Complete Graph ( https://www.researchgate.net/figure/An-example-of-a-complete-graph-with-N-7-vertices-out-of-which-k-2-are-targets_fig5_230570623 )

สำหรับบทความนี้ก็ขอจบเพียงเท่านี้ครับ หากผิดพลาดประการใดก็ขออภัยมา ณ ที่นี้ด้วยครับ

Reference:

- https://www.theviable.co/how-big-data-impact-to-corporate/
- https://www.techentice.com/the-data-veracity-big-data/
- Neo4j, วฤษาย์ ร่มสายหยุด. se-ed, 2563
- https://www.geeksforgeeks.org/largest-subset-graph-vertices-edges-2-colors/
- http://omtlab.com/directed-and-undirected-graph/
- https://www.researchgate.net/figure/An-example-of-a-complete-graph-with-N-7-vertices-out-of-which-k-2-are-targets_fig5_230570623
- https://hazelcast.com/glossary/directed-acyclic-graph/
- https://www.geeksforgeeks.org/detect-cycle-in-a-graph/
- http://omtlab.com/directed-and-undirected-graph/
- https://www.perceptra.tech/6-vs-of-big-data/
- https://www.m-brain.com/technology/
- https://www.elderresearch.com/blog/42-v-of-big-data